- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bergstrom, Benjamin D. (1)
-
Cammarota, Ryan (1)
-
Cammarota, Ryan C. (1)
-
Dishman, Sarah N. (1)
-
Fettinger, James C. (1)
-
Lo, Anna (1)
-
Lopez, Ixchel (1)
-
Miller, Beck (1)
-
Miller, Beck R. (1)
-
Shaw, Jared T. (1)
-
Shiue, Yuan-Shin (1)
-
Sigman, Matthew (1)
-
Sigman, Matthew S. (1)
-
Souza, Lucas W. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Steric molecular descriptors designed for machine learning (ML) applications are critical for connecting structure-function relationships to mechanistic insight. However, many of these descriptors are not suitable for application to com-plex systems, such as catalyst reactive site pockets. In this context, we recently disclosed a new set of 3D steric molecular descriptors that were originally designed for dirhodium(II) tetra-carboxylate catalysts. Herein, we expand the Spatial Molding for Rigid Targets (SMART) descriptor toolkit by releasing SMARTpy; an automated, open-source Python API package for computational workflow integration of SMART descriptors. The impact of the structure of the molecular probe for generation of SMART descriptors was analyzed. Resultant SMART descriptors and pocket features were found to be highly dependent upon probe selection, and do not scale linearly. Flexible probes with smaller substituents can explore narrow pocket regions resulting in a higher resolution pocket imprint. Macrocyclic probes with larger substituents are more applicable to larger cavities with smooth boundaries, such as dirhodium paddlewheel complexes. In these cases, SMARTpy provides comparable descriptors to the original calculation method using UCSF Chimera. Finally, we analyzed a series of case studies demonstrating how SMART descriptors can impact other areas of catalysis, such as organocatalysis, biocatalysis, and protein pocket analysis.more » « less
-
Souza, Lucas W.; Miller, Beck R.; Cammarota, Ryan C.; Lo, Anna; Lopez, Ixchel; Shiue, Yuan-Shin; Bergstrom, Benjamin D.; Dishman, Sarah N.; Fettinger, James C.; Sigman, Matthew S.; et al (, ACS Catalysis)
An official website of the United States government
